Institutional Repository

Neurale netwerke as moontlike woordafkappingstegniek vir Afrikaans

Show simple item record

dc.contributor.advisor Swanepoel, Carel Johannes
dc.contributor.author Fick, Machteld
dc.date.accessioned 2009-08-25T10:44:56Z
dc.date.available 2009-08-25T10:44:56Z
dc.date.issued 2002-09
dc.identifier.citation Fick, Machteld (2002) Neurale netwerke as moontlike woordafkappingstegniek vir Afrikaans, University of South Africa, Pretoria, <http://hdl.handle.net/10500/584> en
dc.identifier.uri http://hdl.handle.net/10500/584
dc.description Text in Afrikaans
dc.description Summaries in Afrikaans and English
dc.description.abstract In Afrikaans, soos in NederJands en Duits, word saamgestelde woorde aanmekaar geskryf. Nuwe woorde word dus voortdurend geskep deur woorde aanmekaar te haak Dit bemoeilik die proses van woordafkapping tydens teksprosessering, wat deesdae deur rekenaars gedoen word, aangesien die verwysingsbron gedurig verander. Daar bestaan verskeie afkappingsalgoritmes en tegnieke, maar die resultate is onbevredigend. Afrikaanse woorde met korrekte lettergreepverdeling is net die elektroniese weergawe van die handwoordeboek van die Afrikaanse Taal (HAT) onttrek. 'n Neutrale netwerk ( vorentoevoer-terugpropagering) is met sowat. 5 000 van hierdie woorde afgerig. Die neurale netwerk is verfyn deur 'n gcskikte afrigtingsalgoritme en oorfragfunksie vir die probleem asook die optimale aantal verborge lae en aantal neurone in elke laag te bepaal. Die neurale netwerk is met 5 000 nuwe woorde getoets en dit het 97,56% van moontlike posisies korrek as of geldige of ongeldige afkappingsposisies geklassifiseer. Verder is 510 woorde uit tydskrifartikels met die neurale netwerk getoets en 98,75% van moontlike posisies is korrek geklassifiseer. af
dc.description.abstract In Afrikaans, like in Dutch and German, compound words are written as one word. New words are therefore created by simply joining words. Word hyphenation during typesetting by computer is a problem, because the source of reference changes all the time. Several algorithms and techniques for hyphenation exist, but results are not satisfactory. Afrikaans words with correct syllabification were extracted from the electronic version of the Handwoordeboek van die Afrikaans Taal (HAT). A neural network (feedforward backpropagation) was trained with about 5 000 of these words. The neural network was refined by heuristically finding a suitable training algorithm and transfer function for the problem as well as determining the optimal number of layers and number of neurons in each layer. The neural network was tested with 5 000 words not the training data. It classified 97,56% of possible points in these words correctly as either valid or invalid hyphenation points. Furthermore, 510 words from articles in a magazine were tested with the neural network and 98,75% of possible positions were classified correctly. en
dc.format.extent 1 online resource (ii, 102 pages)
dc.language.iso af
dc.subject Neural networks en
dc.subject Backpropagation en
dc.subject Feed-forward en
dc.subject Training algorithm en
dc.subject Transfer function en
dc.subject Resilient backpropagation en
dc.subject Early termination en
dc.subject Encoding en
dc.subject Hyphenation en
dc.subject Syllabification en
dc.subject.ddc 410.285
dc.subject.lcsh Afrikaans language -- Syllabication en
dc.subject.lcsh Afrikaans language -- Data processing en
dc.subject.lcsh Syllabication -- Data processing en
dc.subject.lcsh Neural networks (Computer science) en
dc.subject.lcsh Back propagation (Artificial intelligence) en
dc.title Neurale netwerke as moontlike woordafkappingstegniek vir Afrikaans af
dc.type Dissertation en
dc.description.department Computing
dc.description.degree M.Sc. (Operasionele Navorsing)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics